Characteristics of Bacterial and Fungal Communities in Quaternary Red Soils under Different Land-use Patterns
-
摘要:目的 明确不同土地利用方式下第四纪古红土细菌和真菌群落特征,为古红土健康评价提供重要的生物性状数据,并为古红土资源的合理利用和科学管理提供指导。方法 以疏林荒草地、荒草地、林地、耕地第四纪古红土和附近处于同一地层的埋藏第四纪古红土为研究对象,并以埋藏古红土作为对照组,利用高通量测序技术对不同土地利用方式下第四纪古红土细菌和真菌群落的丰富度、多样性和群落组成的变化进行分析,结合古红土理化性状,系统揭示不同土地利用方式下第四纪古红土细菌和真菌的群落特征。结果 ①不同土地利用方式下第四纪古红土间微生物α 多样性指数存在显著差异,较埋藏古红土,疏林荒草地、荒草地、林地和耕地古红土的细菌丰富度指数和多样性指数以及真菌的丰富度指数均显著增加,耕地的真菌多样性指数显著降低。②埋藏古红土出露地表后不同利用方式下第四纪古红土细菌和真菌优势菌群的相对丰度发生显著变化。较埋藏古红土,其他不同土地利用方式下古红土中变形菌门的相对丰度均显著降低,酸杆菌门、绿弯菌门和芽单胞菌门的相对丰度均显著增加;疏林荒草地、荒草地和林地的子囊菌门的相对丰度显著降低,疏林荒草地和耕地的担子菌门的相对丰度显著增加,林地的被孢霉门的相对丰度显著增加。③古红土细菌和真菌群落的主坐标分析以及层次聚类分析显示,不同土地利用方式下第四纪古红土细菌和真菌群落结构发生变化,其中,荒草地与林地的群落结构最为相近。结论 埋藏古红土出露地表后不同土地利用方式下第四纪古红土细菌和真菌丰富度、多样性以及群落组成都发生显著变化。研究结果可为开展古红土健康状况评价提供重要的生物性状数据,并为科学地管理与利用古红土资源奠定基础。Abstract:Objective Clarifying the characteristics of bacterial and fungal communities in Quaternary Red soils under different land-use patterns will provide important biological property data for evaluating the health status of Red soils, and to provide guidance for the rational utilization and scientific management of Quaternary Red soil resources.Method Quaternary Red soils in sparse forest grassland, grassland, woodland, cultivated land and their nearby buried Quaternary Red soils underlying loess from the same stratum were taken as the research objects, and the buried Quaternary Red soil was taken as the control group. The high-throughput sequencing technology was used to determine the abundance, diversity and community composition changes of bacterial and fungal communities in Quaternary Red soils under different land use patterns. Combined with soil physical-chemical properties, the community characteristics of bacteria and fungi in Quaternary Red soils under different land use patterns were systematically addressed.Result There were significant differences between the α-diversity index of microbes in Quaternary Red soils under different land-use patterns. Compared to the buried Quaternary Red soil, the bacterial abundance index, diversity index, and fungal abundance index of Quaternary Red soils of sparse forest grassland, grassland, woodland, and cultivated land increased significantly, while the fungal diversity index of cultivated land decreased significantly. The relative abundance of dominant bacterial and fungal communities in Quaternary Red soils changed significantly under different land-use patterns following the buried Quaternary Red soils eroded to the land surface. Compared to the buried Quaternary Red soil, the relative abundance of Proteobacteria in Quaternary Red soils under other land-use patterns significantly decreased, while the relative abundance of Acidobacteria, Chloroflex and Gemmatimonadetes significantly increased. The relative abundance of Ascomycota decreased significantly in the sparse forest grassland, grassland and woodland, while the relative abundance of Basidiomycota increased significantly in the sparse forest and cultivated land, and the relative abundance of Mortierellomycota increased significantly in the woodland. The principal coordinates and hierarchical clustering analysis showed that the community structure of bacterial and fungal in Quaternary Red soils changed under different land-use patterns, and the community structure of the Quaternary Red soil of sparse forest grassland was the most similar to that of woodland.Conclusion The bacterial and fungal abundance, diversity, and community composition of Quaternary Red soils changed significantly under different land-use patterns following buried ancient red soils exposed to the ground surface. The research results could provide important biological property data for diagnosing the Quaternary Red soil health status, and a foundation for scientific management and utilization of Quaternary Red soil resources.
-
Keywords:
- Land-use pattern /
- Quaternary Red soil /
- Soil microorganism /
- Bacteria /
- Fungi /
- Community characteristics
-
表 1 不同土地利用方式下第四纪古红土微生物OTU水平上α多样性(均值 ± 标准差)
Table 1 The alpha diversities of Quaternary Red soils under different land-use patterns at the level of OTU (Mean ± SD)
微生物
Microorganism土地利用方式
Land-use patternChao1 指数
Chao1 index物种数目指数
Observed species index香农指数
Shannon index辛普森指数
Simpson index细菌 MC_02 624.461 ± 119.083 c 616.700 ± 119.568 c 5.962 ± 0.212 d 0.954 ± 0.011 b CL_02 3777.563 ± 373.039 b 3754.800 ± 368.817 b 10.154 ± 0.236 bc 0.995 ± 0.002 a CL_03 3931.893 ± 538.495 b 3890.567 ± 550.564 b 9.823 ± 0.389 c 0.993 ± 0.004 a CL_04 4263.643 ± 263.501 ab 4202.233 ± 255.552 ab 10.403 ± 0.258 ab 0.996 ± 0.002 a CL_05 4649.870 ± 403.485 a 4599.367 ± 397.124 a 10.721 ± 0.358 a 0.997 ± 0.002 a 真菌 MC_02 110.670 ± 20.366 c 108.667 ± 20.835 c 5.301 ± 0.214 a 0.946 ± 0.013 a CL_02 171.571 ± 40.814 b 168.900 ± 40.974 b 4.762 ± 0.736 ab 0.894 ± 0.074 ab CL_03 194.510 ± 45.361 b 192.767 ± 44.644 b 4.863 ± 0.951 ab 0.897 ± 0.081 ab CL_04 180.885 ± 6.116 b 179.933 ± 6.165 b 5.433 ± 0.472 a 0.941 ± 0.037 a CL_05 255.064 ± 25.179 a 251.833 ± 27.134 a 4.095 ± 0.622 b 0.798 ± 0.103 b 注:同列不同字母表示差异达5%为显著水平,下同。 表 2 不同土地利用方式下第四纪古红土在属水平上真菌的相对丰度比较(均值 ± 标准差)
Table 2 Comparisons of fungi relative abundances at the genus level between Quaternary Red soils under different land-use patterns (Mean ± SD)
真菌属
Fungi genusMC_02 CL_02 CL_03 CL_04 CL_05 Tausonia 0.822 ± 0.723 b 0.077 ± 0.134 b 0.001 ± 0.002 b 2.428 ± 2.317 b 38.914 ± 17.336 a 乳牛杆菌属(Suillus) 0.000 ± 0.000 b 35.224 ± 15.870 a 0.095 ± 0.089 b 0.000 ± 0.000 b 0.002 ± 0.004 b 被孢霉属(Mortierella) 1.770 ± 1.924 bc 1.113 ± 0.753 c 7.877 ± 5.692 b 18.565 ± 5.518 a 0.686 ± 0.170 c 假裸囊菌属(Pseudogymnoascus) 0.138 ± 0.239 c 0.057 ± 0.072 c 0.049 ± 0.073 c 2.992 ± 1.468 b 17.078 ± 1.743 a 锤舌菌属(Leohumicola) 0.000 ± 0.000 b 1.211 ± 2.098 b 16.746 ± 4.643 a 1.337 ± 1.094 b 0.024 ± 0.042 b 青霉菌属(Penicillium) 2.628 ± 2.028 b 7.999 ± 3.463 a 0.395 ± 0.388 b 1.715 ± 0.755 b 3.503 ± 2.349 b 树粉孢属(Oidiodendron) 0.000 ± 0.000 b 13.090 ± 1.900 a 0.035 ± 0.057 b 0.064 ± 0.107 b 0.237 ± 0.101 b 链格孢属(Alternaria) 9.294 ± 3.169 a 0.268 ± 0.251 b 0.242 ± 0.357 b 0.113 ± 0.190 b 2.097 ± 0.510 b 瓶霉属(Phialemoniopsis) 8.436 ± 3.327 a 0.110 ± 0.155 b 0.000 ± 0.000 b 0.000 ± 0.000 b 0.007 ± 0.012 b 曲霉属(Aspergillus) 3.705 ± 2.667 a 3.181 ± 1.164 a 0.123 ± 0.213 b 0.188 ± 0.324 b 0.026 ± 0.043 b -
[1] 秦 红, 李昌晓, 任庆水. 不同土地利用方式对三峡库区消落带土壤细菌和真菌多样性的影响[J]. 生态学报, 2017, 37(10): 3494 − 3504. [2] 朱永官, 彭静静, 韦 中, 等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学, 2021, 51(1): 1 − 11. [3] 李世贵, 吕天晓, 顾金刚, 等. 土壤微生物分子生态学研究方法[J]. 中国土壤与肥料, 2008, (6): 1 − 4, 14. doi: 10.3969/j.issn.1673-6257.2008.06.001 [4] Huang Q, Wang J. The 19-years inorganic fertilization increased bacterial diversity and altered bacterial community composition and potential functions in a paddy soil[J]. Applied Soil Ecology, 2019, 144: 60 − 67. doi: 10.1016/j.apsoil.2019.07.009
[5] Kennedy AC. Bacterial diversity in agroecosystems[J]. Agriculture Ecosystems & Environment, 1999, 74(1-3): 65 − 76.
[6] Singh B K, Bardgett R D, Smith P, et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology, 2010, 8(11): 779 − 790. doi: 10.1038/nrmicro2439
[7] Chen Q L, Cui H L, Su J Q, et al. Antibiotic Resistomes in Plant Microbiomes[J]. Trends in Plant Science, 2019, 24(06): 530 − 541. doi: 10.1016/j.tplants.2019.02.010
[8] Wagg, Cameron, Franz, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 5266 − 5270. doi: 10.1073/pnas.1320054111
[9] Pankhurst C, Hawke B, Mcdonald H, et al. Evaluation of soil biological properties as potential bioindicators of soil health[J]. Australian Journal of Experimental Agriculture, 1995, 35(7): 1015 − 1028. doi: 10.1071/EA9951015
[10] 胡 芳, 王 芳, 韩晓增, 等. 不同土地利用方式下典型黑土区土壤微生物群落演替规律[J/OL]. 土壤学报: 1 − 10[2022-03-25]. [11] 林耀奔, 杨建辉, 叶艳妹. 盐碱地不同土地利用方式下土壤细菌群落结构多样性差异分析[J]. 环境科学学报, 2019, 39(4): 1266 − 1273. [12] 夏光辉, 郭青霞, 卢庆民, 等. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征[J]. 水土保持通报, 2020, 40(2): 140 − 147, 153. doi: 10.13961/j.cnki.stbctb.2020.02.020 [13] 蔡进军, 董立国, 李生宝, 等. 黄土丘陵区不同土地利用方式土壤微生物功能多样性特征[J]. 生态环境学报, 2016, 25(4): 555 − 562. [14] 钟泽坤, 杨改河, 任成杰, 等. 黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征[J]. 环境科学, 2021, 42(1): 411 − 421. [15] 韩春兰, 王秋兵, 孙福军, 等. 辽宁朝阳地区第四纪古红土特性及系统分类研究[J]. 土壤学报, 2010, 47(5): 836 − 846. doi: 10.11766/trxb200903020076 [16] 刘良梧, 龚子同. 古红土的发育与演变[J]. 海洋地质与第四纪地质, 2000, (3): 37 − 42. [17] 马 琳. 浅析土地利用变化对土壤性质的影响[J]. 种子科技, 2018, 36(9): 8, 10. [18] 及 利, 杨雨春, 王 君, 等. 不同土地利用方式下酚酸物质与土壤微生物群落的关系[J]. 生态学报, 2019, 39(18): 6710 − 6720. [19] 王秋兵, 韩春兰, 孙福军, 等. 《中国土系志·辽宁卷》[M]. 科学出版社, 2020: 1 − 397. [20] 于立忠, 张景普, 刘利芳, 等. 间伐对不同肥力日本落叶松人工林土壤酶活性的影响[J]. 生态学杂志, 2017, 36(11): 3017 − 3027. doi: 10.13292/j.1000-4890.201711.039 [21] 段斯译, 孙仲秀, 王秋兵, 等. 不同土地利用方式下第四纪古红土团聚体的组成比较研究[J]. 土壤通报, 2020, 51(3): 587 − 596. doi: 10.19336/j.cnki.trtb.2020.03.12 [22] 李 栋, 侯建革, 李 艳, 等. 黑果腺肋花楸酒对肝损伤小鼠肠道菌群的影响[J]. 食品研究与开发, 2021, 42(15): 27 − 33. doi: 10.12161/j.issn.1005-6521.2021.15.005 [23] 钱雅丽, 梁志婷, 曹 铨, 等. 陇东旱作果园生草对土壤细菌群落组成的影响[J]. 生态学杂志, 2018, 37(10): 3010 − 3017. doi: 10.13292/j.1000-4890.201810.021 [24] 秦红灵, 袁红朝, 张 慧, 等. 红壤坡地利用方式对土壤细菌群落结构的影响[J]. 土壤学报, 2011, 48(3): 594 − 602. doi: 10.11766/trxb201004190145 [25] Batlle-Aguilar J, Brovelli A, Porporato A, et al. Modelling soil carbon and nitrogen cycles during land use change. A review[J]. Agronomy for Sustainable Development, 2011, 31(2): 251 − 274.
[26] Carney, KM, Matson, et al. The influence of tropical plant diversity and composition on soil microbial communities[J]. Microbial Ecology, 2006, 52(2): 226 − 238. doi: 10.1007/s00248-006-9115-z
[27] Galicia L, Garcya-Oliva F. The effects of C, N and P additions on soil microbial activity under two remnant tree species in a tropical seasonal pasture[J]. Applied Soil Ecology, 2004, 26(1): 31 − 39.
[28] Sarathchandra S U, Ghani A, Yeates G W, et al. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils[J]. Soil Biology and Biochemistry, 2001, 33(7-8): 953 − 964. doi: 10.1016/S0038-0717(00)00245-5
[29] Guo L B, Halliday M J, Siakimotu S, et al. Fine root production and litter input: Its effects on soil carbon[J]. Plant and Soil, 2005, 272(1-2): 1 − 10. doi: 10.1007/s11104-004-3611-z
[30] Ledo A, Smith P, Zerihum A, et al. Changes in soil organic carbon under perennial crops[J]. Global Change Biology, 2020, 26(7): 1 − 11.
[31] 吴凤芝, 沈彦辉, 周新刚, 等. 添加小麦和燕麦秸秆对连作黄瓜生长及土壤微生物群落结构的调节作用[J]. 中国农业科学, 2015, 48(22): 4585 − 4596. doi: 10.3864/j.issn.0578-1752.2015.22.018 [32] 于少鹏, 史传奇, 胡宝忠, 等. 古大湖湿地盐碱土壤微生物群落结构及多样性分析[J]. 生态学报, 2020, 40(11): 3764 − 3775. [33] 孙 瑞, 孙本华, 高明霞, 等. 长期不同土地利用方式下土土壤微生物特性的变化[J]. 植物营养与肥料学报, 2015, 21(3): 655 − 663. [34] 段斯译, 孙仲秀, 王秋兵, 等. 不同土地利用方式下第四纪古红土有机碳分布特征研究[J]. 土壤通报, 2021, 52(5): 1078 − 1084. [35] Yan N, Marschner P, Cao W, et al. Influence of salinity and water content on soil microorganisms[J]. International Soil and Water Conservation Research, 2015, 3(4): 316 − 323. doi: 10.1016/j.iswcr.2015.11.003
[36] 常龙飞, 王晓龙, 李恒鹏, 等. 巢湖典型低山丘陵区不同土地利用类型壤中流养分流失特征[J]. 生态与农村环境学报, 2012, 28(5): 511 − 517. doi: 10.3969/j.issn.1673-4831.2012.05.007 [37] Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626 − 631. doi: 10.1073/pnas.0507535103
[38] 杨志谦, 王维敏. 秸秆还田后碳、氮在土壤中的积累与释放[J]. 土壤肥料, 1991, (5): 43 − 46. [39] Peng C, Lai S, Luo X, et al. Effects of long term rice straw application on the microbial communities of rapeseed rhizosphere in a paddy-upland rotation system[J]. Science of the Total Environment, 2016, 557: 231 − 239.
[40] Yang S, Xiao Y, Xu J, et al. Effect of straw return on soil respiration and NEE of paddy fields under water-saving irrigation[J]. PLos One, 2018, 13(10): 1932 − 6203.
[41] 韩新忠, 朱利群, 杨敏芳, 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响[J]. 农业环境科学学报, 2012, 31(11): 2192 − 2199. [42] 郭晓雯, 陈 静, 鲁晓宇, 等. 生物炭和秸秆还田对微咸水滴灌棉田土壤真菌群落结构多样性的影响[J/OL]. 环境科学: 1-16[2022-03-13]. [43] 徐龙晓, 荀 咪, 宋建飞, 等. 土壤质地和砧木对苹果根际微生物功能多样性及其碳源利用的影响[J]. 园艺学报, 2020, 47(8): 1530 − 1540. [44] Franzluebbers A J, and, et al. Active fractions of organic matter in soils with different texture[J]. Soil Biology and Biochemistry, 1996, 28(10 − 11): 1367 − 1372. doi: 10.1016/S0038-0717(96)00143-5
[45] 江春玉, 刘 萍, 刘 明, 等. 不同肥力红壤水稻土根际团聚体组成和碳氮分布动态[J]. 土壤学报, 2017, 54(1): 138 − 149. doi: 10.11766/trxb201605060123 [46] 李孝梅, 李永梅, 乌达木, 等. 玉米间作大豆、萝卜对红壤不同粒径水稳性团聚体碳氮分布的影响[J]. 中国土壤与肥料, 2022, (1): 104 − 111. [47] 罗红燕. 土壤团聚体中微生物群落的空间分布及其对耕作的响应[D]. 西南大学, 2009. [48] 罗红燕, 蒋先军, 谢德体, 等. 真菌和细菌生物量在土壤团聚体中的分布和耕作响应[J]. 生态学报, 2009, 29(8): 4588 − 4594. doi: 10.3321/j.issn:1000-0933.2009.08.069 [49] 李 景, 吴会军, 武雪萍, 等. 长期不同耕作措施对土壤团聚体特征及微生物多样性的影响[J]. 应用生态学报, 2014, 25(8): 2341 − 2348. [50] 董 静, 邢锦城, 温祝桂, 等. 苏北滩涂盐碱地3种典型盐生植物根际土壤细菌多样性及群落结构分析[J]. 江苏农业科学, 2021, 49(8): 212 − 218. doi: 10.15889/j.issn.1002-1302.2021.08.037 [51] 马晓英, 马 琨, 周 艳, 等. 土壤细菌群落组成对有机与无机培肥措施的响应[J]. 西北农业学报, 2019, 28(10): 1698 − 1707. [52] 台喜生, 冯佳丽, 李 梅, 等. 鞘氨醇单胞菌在生物降解方面的研究进展[J]. 湖南农业科学, 2011, (7): 21 − 25. doi: 10.3969/j.issn.1006-060X.2011.07.007 [53] 韩梦颖, 王雨桐, 高 丽, 等. 降解秸秆微生物及秸秆腐熟剂的研究进展[J]. 南方农业学报, 2017, 48(6): 1024 − 1030. doi: 10.3969/j.issn.2095-1191.2017.06.14 [54] Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2012, 6(5): 1007 − 1017.
[55] 魏志文, 李韵雅, 江 威, 等. 无锡地区常见树木根际土壤酸杆菌多样性[J]. 生态学杂志, 2018, 37(9): 2649 − 2656. doi: 10.13292/j.1000-4890.201809.025 [56] 许 楠, 刑军会, 隋 心, 等. 土地利用方式对高寒地区湿地土壤细菌群落结构和多样性的影响[J]. 江苏农业科学, 2021, 49(24): 233 − 240. doi: 10.15889/j.issn.1002-1302.2021.24.040 [57] Turlapati S A, Minocha R, Bhiravarasa P S, et al. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA[J]. FEMS Microbiology Ecology, 2013, 83(2): 478 − 493. doi: 10.1111/1574-6941.12009
[58] 乔沙沙, 周永娜, 柴宝峰, 等. 关帝山森林土壤真菌群落结构与遗传多样性特征[J]. 环境科学, 2017, 38(6): 2502 − 2512. doi: 10.13227/j.hjkx.201611101 [59] 杨 磊, 张玉龙, 姜同轩, 等. 开垦对盐渍化弃耕地土壤细菌群落组成和结构的影响[J]. 新疆农业科学, 2018, 55(4): 726 − 736. [60] 南丽丽, 郭全恩, 谭杰辉, 等. 轮作休耕模式对土壤细菌群落的影响[J]. 干旱地区农业研究, 2020, 38(6): 128 − 134. doi: 10.7606/j.issn.1000-7601.2020.06.18 [61] 严淑娴, 刘 茗, 刘彩霞, 等. 毛竹纯林土壤微生物多样性高于杉木纯林[J/OL]. 土壤学报: 1 − 16[2022-04-30]. [62] Wang M, Shi S, Lin F, etal. Response of the soil fungal community to multi-factor environmental changes in a temperate forest[J]. Applied Soil Ecology, 2014, 81: 45 − 56. doi: 10.1016/j.apsoil.2014.04.008
[63] 王 楠, 潘小承, 王传宽, 等. 模拟酸雨对毛竹阔叶林过渡带土壤真菌结构及其多样性的影响[J]. 环境科学, 2020, 41(5): 2476 − 2484. doi: 10.13227/j.hjkx.201910180 [64] Philippe V, Baldauf S L, Corinne L, et al. Extensive fungal diversity in plant roots.[J]. Science, 2002, 295(5562): 2051. doi: 10.1126/science.295.5562.2051
[65] Yelle D J, Wei D, Ralph J, et al. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta[J]. Environmental Microbiology, 2011, 13(4): 1091 − 1100. doi: 10.1111/j.1462-2920.2010.02417.x
[66] Osono T, Takeda H. Fungal decomposition of Abies needle and Betula leaf litter[J]. Mycologia, 2006, 98(2): 172 − 179. doi: 10.1080/15572536.2006.11832689
[67] 王 凯, 齐悦彤, 刘建华, 等. 油松与榆树人工林植物-凋落叶-土壤碳、氮、磷化学计量特征[J]. 生态学杂志, 2022, 41(3): 427 − 434. [68] 代红翠, 张 慧, 薛艳芳, 等. 不同耕作和秸秆还田下褐土真菌群落变化特征[J]. 中国农业科学, 2019, 52(13): 2280 − 2294. doi: 10.3864/j.issn.0578-1752.2019.13.008 [69] 宁 琪, 陈 林, 李 芳, 等. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报, 2022, 59(1): 206 − 217. [70] 贺占雪, 马建鹏, 杨 斌, 等. 云南主栽核桃品种对Alternaria alternata叶枯病的抗病性评价[J]. 植物保护, 2019, 45(4): 195 − 200 + 235. [71] 谭仲廷, 李安定, 杨 瑞, 等. 百香果连作对土壤真菌群落结构的影响[J]. 分子植物育种, 2022, 20(4): 1373 − 1382. [72] 刘艳梅, 朱建兰. 甘肃省土壤曲霉属(Aspergillus Mich. ex Link: Fr. )的种[J]. 西北农业学报, 2005, 14(4): 145 − 148 + 157. doi: 10.3969/j.issn.1004-1389.2005.04.037 [73] 吴劲松. 植物对病原微生物的“化学防御”: 植保素的生物合成及其分子调控机制[J]. 应用生态学报, 2020, 31(7): 2161 − 2167. [74] 董爱荣, 吕国忠, 吴庆禹, 等. 小兴安岭凉水自然保护区森林土壤真菌的多样性[J]. 东北林业大学学报, 2004, 32(1): 8 − 10. doi: 10.3969/j.issn.1000-5382.2004.01.003 [75] 杨立宾, 隋 心, 朱道光, 等. 大兴安岭兴安落叶松林土壤真菌群落特征研究[J]. 中南林业科技大学学报, 2017, 37(12): 76 − 84.