生命周期评价研究及其在我国土壤修复领域的应用进展

杨宗帅, 魏昌龙, 宋昕, 王生晖, 熊勤学, 李燕丽

杨宗帅, 魏昌龙, 宋 昕, 王生晖, 熊勤学, 李燕丽. 生命周期评价研究及其在我国土壤修复领域的应用进展[J]. 土壤通报, 2023, 54(4): 966 − 977. DOI: 10.19336/j.cnki.trtb.2022040808
引用本文: 杨宗帅, 魏昌龙, 宋 昕, 王生晖, 熊勤学, 李燕丽. 生命周期评价研究及其在我国土壤修复领域的应用进展[J]. 土壤通报, 2023, 54(4): 966 − 977. DOI: 10.19336/j.cnki.trtb.2022040808
YANG Zong-shuai, WEI Chang-long, SONG Xin, WANG Sheng-hui, XIONG Qin-xue, LI Yan-li. Development of Life Cycle Assessment and Its Applications in Soil Remediation in China[J]. Chinese Journal of Soil Science, 2023, 54(4): 966 − 977. DOI: 10.19336/j.cnki.trtb.2022040808
Citation: YANG Zong-shuai, WEI Chang-long, SONG Xin, WANG Sheng-hui, XIONG Qin-xue, LI Yan-li. Development of Life Cycle Assessment and Its Applications in Soil Remediation in China[J]. Chinese Journal of Soil Science, 2023, 54(4): 966 − 977. DOI: 10.19336/j.cnki.trtb.2022040808

生命周期评价研究及其在我国土壤修复领域的应用进展

基金项目: 国家重点研发计划项目(2019YFC1805700)和江苏省重点研发计划项目(BE2019624)资助
详细信息
    作者简介:

    杨宗帅(1998−),男,河南禹州人,在读硕士研究生。主要从事污染场地可持续修复研究。E-mail: zsyang@issas.ac.cn

    通讯作者:

    李燕丽: E-mail: yanli1082@gmail.com

  • 中图分类号: X53;X82

Development of Life Cycle Assessment and Its Applications in Soil Remediation in China

  • 摘要: 生命周期评价(Life Cycle Assessment, LCA)能够定量评估产品或技术造成的环境影响,并且识别关键环节从而优化工艺,是资源利用、能源消耗和可持续评估的重要工具。本文系统分析了国内外LCA研究现状和发展趋势,探讨了LCA的标准、数据库、模型和计算工具等内容,并详述了LCA在我国土壤修复领域的研究进展。LCA经历了萌芽、探索、快速发展和完善四个阶段,且已融入各行业领域。Web of Science数据库中有关LCA的发文量在1990年后迅速增多,截至2021年底,共计发表33114篇论文,其中环境领域为26254篇,占总发文量的79.3%;我国在LCA研究方面已有初步进展,相关年发文量由2000年的5篇增长至2021年的935篇,但尚未构建本土化完整的LCA基础数据库和研究模型,现阶段应统筹尽快建立具有我国特色的LCA体系。土壤修复作为国内碳减排工作的重要组成部分,加强LCA的相关研究和应用将促进低碳可持续修复技术和装备的研发。我国土壤修复领域的LCA研究多涉及复合污染场地、异位协同修复技术。原位修复技术渐成土壤修复主流,未来应加强对原位修复技术的LCA研究,以促进绿色可持续修复技术研发和碳减排任务的落实。

     

    Abstract: Life Cycle Assessment (LCA) can quantitatively assess the environmental impact caused by products or technologies and identify key links to optimize processes. It is an important tool for resource utilization, energy consumption and sustainable assessment. This study systematically analyzed the research status and development trend of LCA at home and abroad, discussed the content of LCA standards, databases, models and calculation tools, and detailed the research progress of LCA in the field of soil remediation in China. LCA has gone through four stages: germination, exploration, rapid development and improvement, and has been integrated into various industries and fields. The number of publications on LCA in the Web of Science database increased rapidly after 1990. By the end of 2021, a total of 33,114 papers had been published, among which 26,254 papers were published in the field of environment, accounting for 79.3% of the total publications. China has made preliminary progress in LCA research, with the annual number of articles increasing from 5 in 2000 to 935 in 2021. However, a localized and complete LCA database and research model have not yet been constructed in China. At present, it is necessary to establish a LCA system with Chinese characteristics as soon as possible. Soil remediation is an important part of carbon emissions reduction in China. Strengthening the research and application of LCA will promote the development of low-carbon sustainable remediation technologies and equipment. LCA research in soil remediation field in China mainly involves ex-situ remediation technologies. In-situ remediation technology has gradually become the mainstream of soil remediation. In the future, LCA research on in-situ remediation technology should be strengthened to promote green and sustainable remediation technology development and carbon emission reduction.

     

  • 图  1   WoS数据库中LCA的年发文量及发展历程

    Figure  1.   Number of annual papers and LCA development in WoS database

    图  2   不同研究领域中LCA发文量

    Figure  2.   Number of published papers on LCA in different research fields

    图  3   LCA工作基本程序

    Figure  3.   Basic procedure for LCA

    表  1   国内外LCA基础数据库对比

    Table  1   Comparison of LCA databases at domestic and abroad

    类别
    Category
    数据库
    Database
    开发单位
    Developer
    数据库简介
    Introduction
    国外 Ecoinvent 瑞士Ecoinvent中心 涵盖了全球不同区域的包括7000多种产品单元过程及1万多种工艺流程,包含了基础工业和农业的数据信息。
    USLCI 美国国家再生能源实验室 包括了美国重要农业、化工、金属等行业的能源和运输数据,有超过900多种单元过程。
    ELCD 欧盟环境研究总署 包括了欧盟超过400多类基础大宗原材料和能源数据集。
    GaBi数据库 德国Thinkstep公司 包括超过4000条LCI数据,涵盖了有机物、无机物、钢铁、能源、金属、电子等行业数据库。
    国内 中国LCA数据库 中国科学院生态环境研究中心 包括数百种中国本土的基础能源、材料和交通运输等数据。主要涵盖钢材、化石能源、省级火电能源的基础数据。
    CLCD数据库 四川大学&成都亿科环境科技 包括600多种本土大宗能源、原材料和运输数据,涵盖煤炭、电力、运输等基础工业,能够提供中国本土化的资源环境特征化因子和归一化基准值。
    MLCD数据库 北京工业大学 基于材料环境协调性评价基础数据库(Sino Center)平台,包含了约12万条材料生命周期分析基础数据。
    下载: 导出CSV

    表  2   主要LCIA计算模型的对比

    Table  2   Comparison of main LCIA models

    模型名称
    Model
    开发国家
    Country
    类型
    Type
    适用区域
    Area
    模型简介
    Introduction
    CML2001 荷兰 中点值模型 欧洲 将环境影响分为能源消耗、污染和人体损害三大类,是一种面向问题的环境分析方法,能够降低模型的复杂程度。
    EDIP 97 丹麦 中点值模型 欧洲 包含全球变暖、酸化、人体毒性、生态毒性、臭氧消耗等环境潜在影响
    EDIP2003 丹麦 中点值模型 全球 影响类别包括环境影响和资源消耗,特征化模型中包括了导致非全球影响的毒性暴露,并将空间异质性与特征化因子关联,无论考不考虑空间区别都可以使用该模型。
    Eco-indicator99 荷兰 中点值模型与终点值模型 欧洲 基于对环境损害的原理进行环境影响评价,可以将环境影响归纳为如全球变暖、土地利用、生态毒性等中点值影响。也可以将环境影响分类为人体健康损害、资源损耗和生态系统损害三大类的终点损害类型
    ReCiPe 2016 荷兰 中点值模型与终点值模型 全球 基于CML和Eco-indicator模型而开发的适用于全球的模型方法,有18种人们关注的中间点影响模型;并能将这些模型归类为人体健康、生态系统和资源消耗三大类。
    IMPACT 2002 + 瑞士 中点值模型与终点值模型 欧洲 能够将14中中间点环境影响模型归类到人体健康、生态系统质量、气候变化和资源消耗四大类,并能重点评估对人体毒性和生态毒性的影响
    IMPACT World + 瑞士 中点值模型与终点值模型 全球 适用于全球的计算模型,降低了区域性的环境类别影响,基于IMPACT 2002 + 模型的改进模型。
    TRACI 美国 中点值模型 美国 基于美国国家政策而建立的评估模型,增加了人体损害和人体毒性的评估,并区分了人体致癌因子和人体非致癌因子。
    下载: 导出CSV

    表  3   主流LCA专业计算工具对比

    Table  3   Comparison of main LCA tools

    工具
    Tool
    开发单位
    Developer
    国家
    Country
    工具简介
    Introduction
    Simapro 莱顿大学 荷兰 单机收费软件,通过不同层级的数据库管理使操作更加便捷,其中涵盖了包括Ecoinvent、IDEMAT2001在内的多个数据库;拥有CML、ReCiPe、Eco-indicator等多个计算模型;并拥有包括人体健康、温室气体、光化学烟雾等在内的多个环境评价指标
    GaBi Thinkstep公司 德国 单机收费软件,专注于产品工艺研究;内置了完整的ELCD数据库并扩展了Ecoinvent等十几个数据库;包含CML、EDIP、ReCiPe等多个计算模型;由方案(Plans)、流程(Processes)和基础流(Flows)组成的独立化模块,具有清晰的结构。
    OpenLCA GreenDelta公司 德国 单机免费软件,可以免费使用多种数据库,是开源的LCA软件,许多功能都实现了模块化,并且能够根据用户实际需求改进源代码。
    e-Footprint 亿科环境公司 中国 基于互联网的在线平台,适用于所有工艺、产品技术的LCA分析、碳足迹分析和生态设计;包含了全部的CLCD数据库并内置了ELCD数据库和Ecoinvent数据库;提供了中国本土化的资源特征因子和节能减排权重因子。
    下载: 导出CSV

    表  4   我国污染土壤修复领域LCA研究相关文章

    Table  4   Publications related to LCA research in the field of contaminated soil remediation in China

    第一作者
    First author
    年份
    Year
    修复技术
    Technology
    污染物
    Pollutant
    LCA计算工具
    LCA professional tool
    LCA计算模型
    LCA model
    LCA数据库
    LCA database
    Hu Xintao[63]2011红外高温焚烧和
    碱催化分解
    多氯联苯Simapro7.2IMPACT2002 + Ecoinvent
    Hong Jinglan[64]2012生物修复五氯苯胺SimaproIMPACT2002 + 、ReCiPeEcoinvent
    Hou Deyi[60]2014异位淋洗和填埋重金属和石油烃/ReCiPe、USES-LCA/
    Hou Deyi[65]2016土壤淋洗、固化稳定化、
    异位热脱附和植物修复
    汞污染Simapro8.0ReCiPeEcoinvent3.1
    Hou Deyi[61]2017挖掘填埋、
    固化稳定化
    铅污染Simapro8.0ReCiPe、HRAEcoinvent3.1
    Song Yinan[62]2018土壤淋洗、固化稳定化和
    异位热脱附
    重金属和PAHsSimapro8.0ReCiPe、USES-LCAEcoinvent3.1
    Ni Zhuobiao[66]2020热处理和生物修复氯代挥发性有机污染物e-Footprint/CLCD、Ecoinvent3.1
    Chen Chang[67]2020原位热脱附、异位热脱
    附和固化稳定化
    汞污染和多种有机
    污染物复合污染
    /IO-LCAChina’s environmental
    statistics annual report
    Hu Guangji[68]2021低温热脱附/Simapro8.5.2ReCiPe 2016(H)、Impact2002 + Ecoinvent3.3
    Jin Yuanliang[69]2021植物富集、固化稳定化和
    替代植物种植
    镉污染/ReCiPeEcoinvent v2.3
      注:按年份排序
    下载: 导出CSV
  • [1]

    Curran M A. Life Cycle Assessment: a review of the methodology and its application to sustainability[J]. Current Opinion in Chemical Engineering, 2013, 2(3): 273 − 277. doi: 10.1016/j.coche.2013.02.002

    [2] 聂祚仁. 生命周期方法与材料生命周期工程实践[J]. 科技导报, 2021, 39(9): 1.
    [3]

    Hendrickson C, Horvath A, Joshi S, et al. Economic input-output models for environmental life-cycle assessment[J]. Environmental Science & Technology, 1998, 32(7): 184A − 191A.

    [4] 杨建新, 王如松. 生命周期评价的回顾与展望[J]. 环境科学进展, 1998, (2): 22 − 29.
    [5]

    Erlandsson M and Borg M. Generic LCA-methodology applicable for buildings, constructions and operation services - today practice and development needs[J]. Building and Environment, 2003, 38(7): 919 − 938. doi: 10.1016/S0360-1323(03)00031-3

    [6]

    Nwodo M N, Anumba C J. A review of life cycle assessment of buildings using a systematic approach[J]. Building and Environment, 2019, 162: 106290. doi: 10.1016/j.buildenv.2019.106290

    [7]

    Hiloidhari M, Baruah D C, Singh A, et al. Emerging role of geographical information system (GIS), life cycle assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning[J]. Bioresource Technology, 2017, 242: 218 − 226. doi: 10.1016/j.biortech.2017.03.079

    [8]

    Goglio P, Smith W N, Worth D E, et al. Development of Crop. LCA, an adaptable screening life cycle assessment tool for agricultural systems: A Canadian scenario assessment[J]. Journal of Cleaner Production, 2018, 172: 3770 − 3780. doi: 10.1016/j.jclepro.2017.06.175

    [9] 张 超, 刘蓓蓓, 李 楠, 等. 面向可持续发展的资源关联研究: 现状与展望[J]. 科学通报, 2021, 66(26): 3426 − 3440.
    [10] 李媛媛, 葛晓华, 王文静, 等. 技术生命周期评价进展及其在碳中和领域应用趋势分析[J]. 环境工程技术学报, 2022, 12(4): 1048 − 1057. doi: 10.12153/j.issn.1674-991X.20210265
    [11] 矫旭东, 吴 佳, 王 韬, 等. 基于全生命周期管理的固体废物分类资源化利用研究[J]. 环境工程, 2021, 39(10): 201 − 206,170. doi: 10.13205/j.hjgc.202110029
    [12] 徐湘博, 孙明星, 张林秀. 农业生命周期评价研究进展[J]. 生态学报, 2021, 41(1): 422 − 433.
    [13]

    International Organization for Standardization(ISO). ISO 14040 Environmental managemental life cycle assessment general principles and framework[S]. ISO, 2006.

    [14] 王长波, 张力小, 庞明月. 生命周期评价方法研究综述−兼论混合生命周期评价的发展与应用[J]. 自然资源学报, 2015, 30(7): 1232 − 1242. doi: 10.11849/zrzyxb.2015.07.015
    [15]

    Beltran A M, Prado V, Vivanco D F, et al. Quantified uncertainties in comparative life cycle assessment: what can be concluded?[J]. Environmental Science & Technology, 2018, 52(4): 2152 − 2161.

    [16] 翟一杰, 张天祚, 申晓旭, 等. 生命周期评价方法研究进展[J]. 资源科学, 2021, 43(3): 446 − 455. doi: 10.18402/resci.2021.03.02
    [17]

    Hauschild M Z. Assessing environmental impacts in a life-cycle perspective[J]. Environmental Science & Technology, 2005, 39(4): 81A − 88A.

    [18] 莫 华, 张天柱. 生命周期清单分析的数据质量评价[J]. 环境科学研究, 2003, (5): 55 − 58. doi: 10.3321/j.issn:1001-6929.2003.05.015
    [19] 郑秀君, 胡 彬. 我国生命周期评价(LCA)文献综述及国外最新研究进展[J]. 科技进步与对策, 2013, 30(6): 155 − 160. doi: 10.6049/kjjbydc.2012020392
    [20] 王玉涛, 王丰川, 洪静兰, 等. 中国生命周期评价理论与实践研究进展及对策分析[J]. 生态学报, 2016, 36(22): 7179 − 7184.
    [21]

    Bach V, Lehmann A, Gormer M, et al. Product environmental footprint (PEF) pilot phase-comparability over flexibility?[J]. Sustainability, 2018, 10(8): 2898. doi: 10.3390/su10082898

    [22] 黄 强, 郭 怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499 − 1509. doi: 10.16183/j.cnki.jsjtu.2021.272
    [23]

    Bigerna S, D'Errico M C, Polinori P. Environmental and energy efficiency of EU electricity industry: An almost spatial two stages DEA approach[J]. Energy Journal, 2019, 40(S1): 29 − 54.

    [24] 杨 东, 刘晶茹, 杨建新, 等. 基于生命周期评价的风力发电机碳足迹分析[J]. 环境科学学报, 2015, 35(3): 927 − 934. doi: 10.13671/j.hjkxxb.2014.0906
    [25] 李小青, 龚先政, 聂祚仁, 等. 中国材料生命周期评价数据模型及数据库开发[J]. 中国材料进展, 2016, 35(3): 171 − 178,204. doi: 10.7502/j.issn.1674-3962.2016.03.02
    [26] 刘夏璐, 王洪涛, 陈 建, 等. 中国生命周期参考数据库的建立方法与基础模型[J]. 环境科学学报, 2010, 30(10): 2136 − 2144. doi: 10.13671/j.hjkxxb.2010.10.028
    [27]

    Rashedi A, Khanam T. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method[J]. Environmental science and pollution research international, 2020, 27(23): 29075 − 29090. doi: 10.1007/s11356-020-09194-1

    [28]

    Harding K G. A technique for reporting life cycle impact assessment (LCIA) results[J]. Ecological Indicators, 2013, 34: 1 − 6. doi: 10.1016/j.ecolind.2013.03.037

    [29]

    Chen X J, Matthews H S, Griffin W M. Uncertainty caused by life cycle impact assessment methods: Case studies in process-based LCI databases[J]. Resources Conservation and Recycling, 2021, 172: 105678. doi: 10.1016/j.resconrec.2021.105678

    [30]

    Chen W, Zhang F F, Hong J L, et al. Life cycle toxicity assessment on deep-brine well drilling[J]. Journal of Cleaner Production, 2016, 112(S1): 326 − 332.

    [31]

    Li X Z, Yang Y, Xu X, et al. Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China[J]. Journal of Cleaner Production, 2016, 112(S2): 1360 − 1367.

    [32]

    Liu Z, Guan D B, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335 − 338. doi: 10.1038/nature14677

    [33]

    Helias A, Esnouf A, Finkbeiner M. Consistent normalization approach for life cycle assessment based on inventory databases[J]. Science of the Total Environment, 2020, 703: 134583. doi: 10.1016/j.scitotenv.2019.134583

    [34]

    Esnouf A, Latrille E, Steyer J-P, et al. Representativeness of environmental impact assessment methods regarding life cycle inventories[J]. Science of the Total Environment, 2018, 621: 1264 − 1271. doi: 10.1016/j.scitotenv.2017.10.102

    [35]

    Dreyer L C, Niemann A L, Hauschild M Z. Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99[J]. The International Journal of Life Cycle Assessment, 2003, 8(4): 191 − 200. doi: 10.1007/BF02978471

    [36]

    Prasara-a J, Grant T. Comparative life cycle assessment of uses of rice husk for energy purposes[J]. The International Journal of Life Cycle Assessment, 2011, 16(6): 493 − 502. doi: 10.1007/s11367-011-0293-7

    [37]

    Bare J C. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0[J]. Clean Technologies and Environmental Policy, 2011, 13(5): 687 − 696. doi: 10.1007/s10098-010-0338-9

    [38]

    Bulle C, Margni M, Patouillard L, et al. IMPACT World + : a globally regionalized life cycle impact assessment method[J]. The International Journal of Life Cycle Assessment, 2019, 24(9): 1653 − 1674. doi: 10.1007/s11367-019-01583-0

    [39]

    Huijbregts M A J, Steinmann Z J N, Elshout P M F, et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level[J]. The International Journal of Life Cycle Assessment, 2017, 22(2): 138 − 147. doi: 10.1007/s11367-016-1246-y

    [40]

    Zhang R R, Ma X T, Shen X X, et al. Life cycle assessment of electrolytic manganese metal production[J]. Journal of Cleaner Production, 2020, 253: 119951. doi: 10.1016/j.jclepro.2019.119951

    [41] 杨建新, 王如松, 刘晶茹. 中国产品生命周期影响评价方法研究[J]. 环境科学学报, 2001, (2): 234 − 237. doi: 10.3321/j.issn:0253-2468.2001.02.022
    [42] 陈 莎, 孙中梅, 李素梅, 等. 动态生命周期评价的研究与应用现状[J]. 中国环境科学, 2018, 38(12): 4764 − 4771. doi: 10.3969/j.issn.1000-6923.2018.12.047
    [43] 李雪迎, 白 璐, 杨庆榜, 等. 我国终点型生命周期影响评价模型及基准值初步研究[J]. 环境科学研究, 2021, 34(11): 2778 − 2786. doi: 10.13198/j.issn.1001-6929.2021.08.05
    [44]

    Herrmann I T, Moltesen A J J o C P. Does it matter which life cycle assessment (LCA) tool you choose? – a comparative assessment of SimaPro and GaBi[J]. Journal of Cleaner Production, 2015, 86: 163 − 169. doi: 10.1016/j.jclepro.2014.08.004

    [45]

    U. S EPA. The United States environmental protection agency spreadsheets for environmental footprint analysis (SEFA) [EB/OL]. 2019[2022-02-11]. https://clu-in.org/greenremediation/SEFA/#supportingmethodology.

    [46]

    Suer P, Nilsson-Paledal S, Norrman J. LCA for site remediation: A literature review[J]. Soil & Sediment Contamination, 2004, 13(4): 415 − 425.

    [47] 杨宗帅, 魏昌龙, 宋 昕, 等. 基于Web of Science数据库的污染场地可持续修复领域的文献计量分析[J]. 土壤通报, 2022, 53(1): 221 − 233.
    [48] 董璟琦, 张红振, 雷秋霜, 等. 污染场地修复生命周期评估程序与模型的研究进展[J]. 环境污染与防治, 2016, 38(12): 89 − 95. doi: 10.15985/j.cnki.1001-3865.2016.12.017
    [49]

    Diamond M L, Page C A, Campbell M, et al. Life-cycle framework for assessment of site remediation options: Method and generic survey[J]. Environmental Toxicology and Chemistry, 1999, 18(4): 788 − 800. doi: 10.1002/etc.5620180427

    [50]

    Favara P J, Krieger T M, Boughton B, et al. Guidance for performing footprint analyses and life‐cycle assessments for the remediation industry[J]. Remediation Journal, 2011, 21(3): 39 − 79. doi: 10.1002/rem.20289

    [51] 焦文涛, 方引青, 李绍华, 等. 美国污染地块风险管控的发展历程、演变特征及启示[J]. 环境工程学报, 2021, 15(5): 1821 − 1830. doi: 10.12030/j.cjee.202009186
    [52] 谷庆宝, 侯德义, 伍 斌, 等. 污染场地绿色可持续修复理念、工程实践及对我国的启示[J]. 环境工程学报, 2015, 9(8): 4061 − 4068. doi: 10.12030/j.cjee.20150876
    [53] 宋 昕, 林 娜, 殷鹏华. 中国污染场地修复现状及产业前景分析[J]. 土壤, 2015, 47(1): 1 − 7. doi: 10.13758/j.cnki.tr.2015.01.001
    [54]

    Hou D Y, Al-Tabbaa A. Sustainability: A new imperative in contaminated land remediation[J]. Environmental Science and Policy, 2014, 39: 25 − 34. doi: 10.1016/j.envsci.2014.02.003

    [55] 谷庆宝. 利用与修复, 孰先孰后?−从国外经验看中国土壤环境污染防治[J]. 中国生态文明, 2019, (1): 39 − 42.
    [56]

    Wan X M, Lei M, Yang J, et al. Three-year field experiment on the risk reduction, environmental merit, and cost assessment of four in situ remediation technologies for metal(loid)-contaminated agricultural soil[J]. Environmental Pollution, 2020, 266: 115193. doi: 10.1016/j.envpol.2020.115193

    [57]

    Li S, He L, Zhang B, et al. A comprehensive evaluation method for soil remediation technology selection: Case study of ex situ thermal desorption[J]. International Journal of Environmental Research and Public Health, 2022, 19(6): 3304. doi: 10.3390/ijerph19063304

    [58]

    Li X N, Chen W P, Cundy A B, et al. Analysis of influencing factors on public perception in contaminated site management: Simulation by structural equation modeling at four sites in China[J]. Journal of Environmental Management, 2018, 210: 299 − 306.

    [59]

    Cavalett O, Chagas M F, Seabra J E A, et al. Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods[J]. International Journal of Life Cycle Assessment, 2013, 18(3): 647 − 658. doi: 10.1007/s11367-012-0465-0

    [60]

    Hou D Y, Al-Tabbaa A, Guthrie P, et al. Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park[J]. Journal of Cleaner Production, 2014, 83: 87 − 95. doi: 10.1016/j.jclepro.2014.07.062

    [61]

    Hou D Y, Qi S Q, Zhao B, et al. Incorporating life cycle assessment with health risk assessment to select the ‘greenest’ cleanup level for Pb contaminated soil[J]. Journal of Cleaner Production, 2017, 162: 1157 − 1168. doi: 10.1016/j.jclepro.2017.06.135

    [62]

    Song Y N, Hou D Y, Zhang J L, et al. Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China[J]. Science of the Total Environment, 2018, 610: 391 − 401.

    [63]

    Hu X T, Zhu J X, Ding Q. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition[J]. Journal of Hazardous Materials, 2011, 191(1-3): 258 − 268. doi: 10.1016/j.jhazmat.2011.04.073

    [64]

    Hong J L, Li X N. Life cycle assessment comparison of substrates for the bioremediation of pentachloroaniline under acidogenic/methanogenic conditions[J]. The International Journal of Life Cycle Assessment, 2012, 17(1): 79 − 88. doi: 10.1007/s11367-011-0338-y

    [65]

    Hou D, Y Gu Q B, Ma F J, et al. Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land[J]. Journal of Cleaner Production, 2016, 139: 949 − 956. doi: 10.1016/j.jclepro.2016.08.108

    [66]

    Ni Z B, Wang Y, Wang Y F, et al. Comparative life-cycle assessment of aquifer thermal energy storage integrated with in situ bioremediation of chlorinated volatile organic compounds[J]. Environmental Science & Technology, 2020, 54(5): 3039 − 3049.

    [67]

    Chen C, Zhang X M, Chen J A, et al. Assessment of site contaminated soil remediation based on an input output life cycle assessment[J]. Journal of Cleaner Production, 2020, 263: 121422. doi: 10.1016/j.jclepro.2020.121422

    [68]

    Hu G J, Liu H, Rana A, et al. Life cycle assessment of low-temperature thermal desorption-based technologies for drill cuttings treatment[J]. Journal of Hazardous Materials, 2021, 401: 123865. doi: 10.1016/j.jhazmat.2020.123865

    [69]

    Jin Y L, Wang L W, Song Y N, et al. Integrated life cycle assessment for sustainable remediation of contaminated agricultural soil in China.[J]. Environmental Science & Technology, 2021, 55(17): 12032 − 12042.

图(3)  /  表(4)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  39
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-09-02
  • 录用日期:  2022-09-03
  • 发布日期:  2023-08-05

目录

    /

    返回文章
    返回
    Baidu
    map